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Abstract-In this paper, steady laminar forced convection and radiation heat transfer in the entrance 
region of an internally tinned semicircular duct are analyzed. The fins are continuous and longitudinal, 
with zero thickness. The thermal condition imposed on the semicircular duct is of uniform temperature, 
both axially and peripherally. The three-dimensional energy equation is discretized and solved numerically 
by the method of lines (MOL). The method of momentum (MOM) is employed to consider the radiation 
contribution, which models the radiation in the partial differential equation, instead of the partial integro- 
differential equation. The resulting equations, based on coarse grids, are numerically computed, using a 
Runge-Kutta subroutine. The effect of five major parameters on the thermal behavior in the entry region 
of the semicircular duct is discussed: radiation-conduction, N; optical thickness, t,,; wall emissivity, t; 
number of fins, M; and ratio of fin height to duct radius, H. The variations in the mean bulk temperature 
and total Nusselt numbers show that heat transfer is enhanced in this geometry by both thermal radiation 

and fins. 

INTRODUCTION 

R.4DIAnoN-convection interaction problems with 
internal fins are found when considering the cooling 
of high temperature components and furnace design 
in which heat transfer occurs by parallel radiation and 
convection. 

This study deals with the analytical/numerical solu- 
tion of combined radiation and convection in the ther- 
mal entry region of the semicircular duct with internal 
fins subjected to a uniform wall temperature (Fig. 1). 
A survey of literature by Eckert et al. [l-3], Kakac et 
al. [4], Shah and London [5], Soloukhin and Mar- 
tynenko [6], and Martynenko [A, indicates that sig- 
nificant attention has been devoted in recent years to 
the investigation of combined radiation and laminar 
forced convection in a duct of circular or non-circular 
geometry. However, these investigations, along with 
Pearce and Emery [8], Echigo et al. [9], Yener and 
Fong [lo], Hu and Chang [l 11, Nandakumar and 
Masliyah [12], Soliman and Feingold [13, 141, Soli- 
man et al. [15], Prakash and Patankar [ 161, Prakash 
and Liu [17], and Rustum and Soliman [18, 191, have 
been restricted to situations that either do not account 
for internal fins, or the simultaneous effects of forced 
convection and radiation in the thermal entrance 
region of ducts where the flowing medium is a par- 
ticipating gas. One study related to the present 
problem, but restricted to a circular pipe under iso- 
thermal wall conditions, was carried out by Campo 
[20]. Various methods have been applied by this inves- 
tigation to consider the cases of longitudinal fins for 
both steady-state and transient conditions. The Ritz 
method is applied in the steady-state case, while the 

Kantorovich method is applied to obtain the transient 
solution, assuming that the fin temperature profile 
is the product of a polynomial in position and an 
unknown function of time. The form of the poly- 
nomial position is evaluated from the steady-state 
condition. Comparison with numerical solutions 
shows good accuracy. Accordingly, in this type of 
problem, the energy and radiation transport equa- 
tions must be solved simultaneously in order to deter- 
mine the temperature profiles and heat transfer rates. 

The radiative contribution in the present paper has 
been modeled by the method of moments (MOM) in 
two-dimensions, wherein the radiative transfer equa- 
tion (RTE) is expressed in differential form [21]. The 
salient feature of this approach is that the RTE 
accounting for gray gas behavior is of an elliptic type, 
and consequently, may be accommodated into a gen- 
eral diffusion-convection type of equation. This 
approach also provides an additional conservation 
equation for irradiation. 

In light of the foregoing, the resulting system of four 
partial differential equations is amenable to numerical 
analysis by employing the method of lines (MOL) 
[22]. According to this method, the transversal deriva- 
tives are replaced by finite difference formulations, 
and correspondingly, the region of integration is div- 
ided into a collection of lines parallel to the axial 
coordinate. It is widely known that the retention of 
equal transversal intervals in the presence of irregular 
boundaries constitutes a complicating feature requir- 
ing special equations for nodes in its neighborhood 
[23]. To prevent this complication and difficulty, a 
two-dimensional grid in the cross-stream direction is 
constructed in such a manner that the dividing lines 
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NOMENCLATURE 

Cross sectional area [m’] 

factor defined by equation (12) 
specific heat [J kg-- ’ K ‘1 

hydraulic diameter of duct [m] 
friction factor 

total irradiation [W m ‘J 
dimensionless value of G, equation (9) 
relative height of fin, L,‘r, 

thermal conductivity of fluid 
[Wm-‘Km’] 

characteristic length of the duct. r, [m] 
number of fins 
mass flow rate of fluid [kg s _ ‘1 
radiation<onduction parameter. 

equation (9) 
total Nusselt number, equation (21) 
mean Nusselt number, equation (22) 
perimeter [m] 

pressure [kN m ‘J 
Peclet number, Re Pr 

Prandtl number, v/r 
wall heat flux [W mm ‘1 

dimensionless variable, r/r, 

radial coordinate 
Reynolds number, iiD,+ 

temperature [K] 
dimensional and dimensionless velocity 

of fluid, u/U 
dimensional and dimensionless mean 
velocity of fluid 

- 

e = n/(M+lj 

M = Number of fin 

FIG. 1. Coordinate system for semicircular duct 

coincide with the irregular boundaries, resulting in 
equal or unequal transversal intervals. The partial 

differential equations are replaced by a system of ordi- 
nary differential equations of the first order (the inde- 
pendent variable is the axial coordinate), coupled to 
a system of algebraic equations. In the former, the 
temperature is the dependent variable, while in the 
latter, irradiation is the dependent variable. The 
numerical solution of this non-linear system may be 
readily obtained using Runge-Kutta and TDMA-like 
algorithms. 

In this paper, the hybrid methodology (MOL) has 
been tested for ducts of semicircular cross section with 
longitudinal fins for several different geometries. The 
test is for three and seven fins within the semicircular 
duct, each with a relative fin height of 0.3 and 0.6, 
respectively. The solutions have been obtained in 

M’ generalized dependent variable 
X dimensionless axial coordinates, 

(D,2/+* 
x, x* dimensional and dimensionless axial 

coordinate, x* = x1( D,, PC). 

Greek symbols 

thermal diffusivity of fluid [m’ s ‘1 
extinction coefficient [m ‘1 
wall emissivity 

angular coordinate 
volumetric absorption coefficient [m ‘1 
function, equation (16) 
dynamic viscosity of fluid [kg rn- ’ s ‘1 
kinematic viscosity of fluid [m’ s ‘1 
density of fluid [kg m ‘1 
Stefan-Boltzmann constant 

[Wm 2 Km“] 
optical thickness, equation (9) 
dimensionless temperature. 

Subscripts 
b mean bulk 
c conduction 
C entrance 
R radiation 
ref reference 
T tOtd1 

w wall (circumferential). 

terms of the distribution of the mean bulk temperature 
and the total Nusselt number. The computed results. 
in the absence of radiation, are compared with ref. 
1241 and excellent agreement is observed. 

It is believed that the availability of such hybrid 

solutions is important for the analysis and design of 
high temperature heat exchangers having ducts with 
semicircular cross sections and streamwise internal 
tins. 

STATEMENT OF THE PROBLEM 

The problem to be investigated is that of fully 
developed laminar combined radiation and forced 
convection through the internally finned, semicircular 
duct as shown schematically in Fig. 1. The fins are 
straight, continuous, and distributed equally around 
the tube circumference. The thickness of the fins is 
negligible. A uniform temperature prevails at ail 
points on the fins and the semicircular duct wall. The 
fluid properties are constant. The participating gas is 
gray, emitting, absorbing, and nonscattering. Viscous 
dissipation, heat conduction and radiation in the axial 



direction are negligible. Finally, the pressure gradient 
is the only function of the axial direction. 

Governing equations 
Under the foregoing assumptions, the equations 

governing the problem are : 
Momentum equation. 

(1) 

where x, r, and 0 are the axial, radial, and angular 
coordinates of the duct, respectively. Additionally, 
p is the dynamic viscosity and dP/dX the pressure 
gradient in the axial direction. Equation (1) can be 
written in dimensionless form as 

where 

The boundary conditions are : 

u*=o @ R=l 

and 

au* 

O<R,<l, e=o, z (4) 

==O @ O,<R<(l-H), 

0 = 5 (for odd number of fins) (5) 

where the definitions for the pressure gradient, dP/dX, 
and the hydraulic diameter are the same as those given 
in ref. [24]. 

The energy equation. 

(2) 

(3) 

+K(G-4aT4). (6) 

C= 
oh” 

2rfu*cf Re) ’ (12) 

The applicable boundary conditions for equation (10) 
are 

4=1 @ R=l, oGeGa 

Cl-H)<R<l, e=(,n+l) 

O<R<l, e=o, 71 (13) 

and 

ad 
ae=O @ O<R<(l-H), B=; 

and at the entrance region (X = 0), cj(R, 0,O) = &. 
The irradiation equation (11) is also subjected to 

the following boundary conditions : 

aG* --_=- 
aR 

~r&(G~ - 1) (14) 

@ R=l, o<eca 

@ (I-H)<R<l, 0=& 

@ OGRRlI, e = 0, x. (15) 

Also 

aG* 
----0 @ O<R<(I-H), 0=; 
ae 

where in equation (14) 

1, =E, 
2-E, 

(16) 

The second term on the right-hand side of equation 
(6) corresponds to thermal radiation, where K is the 
total volumetric absorption coefficient, c the Stefan- 
Boltzmann constant and irradiation, G, is given by 

a2G 1 ac 
ar2 + ; ar + f $ = 3/?1c(G-4aT4) (7) 

where /I in equation (7) represents the extinction 
coefficient for a non-scattering gas 

p = K. (8) 

By introducing the following dimensionless vari- 
ables and parameters : and a, is the emissivity of the wall. 
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u+ (p=g 
Iv 

7CD2 

R=;’ Dh=(x+2)D+4MH 

Dh’ x 
X=------ 

rf DhPe’ 
Re = %! 

v ’ 
Pe= RePr 

N = 4gT: G 

F’ 
T,,=rca, G*=-- 

4gT; ’ (9) 

Energy equations (6) and (7) can be written in dimen- 
sionless form as 

a4 ax=C %+;$+A% 
1 1 

+CNT,‘(G*-~~) (10) 

and 

a2G* 1 aG* 1 a2G* 
aR2 +zdR+’ ~ = 3t,Z(G* -4’) 

R a82 (11) 

where 



3138 H. Y. ZHANG and M. A. EBAD~AN 

EXPRESSIONS FOR THE COMBINED 

NUSSELT NUMBER 

The thermal characteristics of fluid flow inside any 

duct may be represented by the dimensionless bulk 
temperature as 

In the case of combining convective and radiative 
heat transfer, the total Nusselt number is related to 
the total heat flux through the wall 

(18) 

where 

Here, qwc and qwR represent the contributions of con- 

vective and radiative heat transfer, respectively. There 
are two ways to determine q,,,. One way is to calculate 
directly the heat flux in terms of the total and mean 
Nusselt numbers as follows : 

1 Nu,, = _____~.__~__~_ ~__ 
l-& 

(19) 

R 

I Nu, dX 

Nu,,~ = mJ 7 

J dX 

Nu, and I%,,,,~ can also be calculated by considering 
the first law of thermodynamics. Since heat transfer 
in the duct wall between two axial locations is equal 
to the energy change in the two cross sections [2.5] 

(21) 

and 

Nu,.T = qlyln (&). (22) 

Equations (19) and (22) are used in computing the 
total Nusselt number. 

NUMERICAL PROCEDURE 

A numerical method is necessary to solve the non- 
linear problem under consideration. Accordingly, the 
system of equations (10) and (1 l), subject to the 
boundary conditions expressed by equations (13)- 
(16) is numerically solved by combining the MOL and 
the fourth-order Runge-Kutta algorithm. 

The temperature distribution, 4(R, 0, X), has been 
determined by the hybrid MOL using uniform grids. 
The MOL has been described by Liskovets [22] as a 
solution technique that transforms a partial differ- 

t 

M=3 

H = 0.3 

Ar= 0.1 

- Length of Fin 

- No. of lines 

FIG. 2. Coordinate system for semicircular duct with M = 3 
and H = 0.3. 

ential equation into an appropriate system of ordinary 
differential equations for a parabolic PDE involving 
three independent variables, as in equation (10). The 
region of integration may be divided into lines parallel 
to the axial coordinate, X. Accordingly, the axial 
derivative, @/8X, remains continuous, while the rad- 
ial and angular derivatives, iY2$/aR2 and a24/a0’, are 
replaced by finite difference formulations using values 
of unknown quantities on the same line and on 
neighboring lines, Figs. 2 and 3. Hence, this simple 
mathematical concept generates a system of ordinary 
differential equations of the first order where the 
dependent variables are described along each line in 
terms of a single independent variable, X. It may, 
therefore, be readily solved numerically employing 
a standard Runge-Kutta algorithm using the finite 
difference method. The partial differential equations 
for G*, equation (14), can be discretized into an 
associated system of algebraic equations. Therefore, 
this system is carried out at each axial station, X, using 

Length of Fin 
No. of lines 

FIG. 3. Coordinate system for semicircular duct with A4 = 7 
and H = 0.6. 
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an adaptation of the Gaussian elimination algorithm 
for the numerical determination of G* at each cross 
section. 

micro VAX 8800. These computations are illustrated 
in Figs. 4-9. 

DISCUSSION OF RESULTS 

The problem investigated in this paper deals with 
combined radiative and forced convection heat trans- 
fer in the entrance region of a semicircular duct with 
longitudinal internal fins. The mean bulk temperature, 
&, equation (17), and the total Nusselt number, equa- 
tion (19), are computed numerically using the MOL 
and MOM. The problem contains several parameters : 
optical thickness, z,, ; radiation-conduction, N; wall 
emissivity, E, ; number of fins, M; and relative fin 
height, H. Numerical solutions were generated for 
a variety of combinations for the above-mentioned 
parameters. All computations were conducted on a 

To ensure the accuracy of the numerical solution, 
an independent grid size test has also been conducted 
in this study. Table 1 depicts the results of this test for 
different grid sizes. The number of fins, the relative fin 
height, wall emissivity, optical thickness, and con- 
duction-radiation parameters in this test are M = 3, 
H = 0.6, ~w = 1.0, zb = 5.0, and N = 0, 1.0, 3.0, 
respectively. Inspection of the data indicates that 
almost identical results for the Nusselt number can be 
obtained with the number of lines specified in this 
table. Therefore, the smaller grid size is mainly used 
throughout this study when computing the Nusselt 
number. 

In order to prove the validity of the proposed 
methodology, numerical solutions for a thermal entrance 

f 60 \ 
N=3 
t&= 1.0 

M=3 H = 0.3 
M=3 H = 0.6 
M=7 H = 0.3 

Nu M=7 H = 0.6 

FIG. 4. Effects of conduction-radiation parameter, number FIG. 7. Effects of optical thickness, number of fins, and 
of fins, relative fin heights on mean bulk temperature. relative fin heights on total Nusselt number. 

G= 1.0 

Tb = 5.0 

_ M=3 H = 0.3 
MS3 H = 0.6 
M=7 H = 0.3 

Nu M=7 H = 0.6 0.6_ 

H = 0.3 

H = 03 

H - 0.3 

n = 0.6 

X 

FIG. 5. Effects of conduction-radiation parameter, number 
of fins, and relative fin heights on the total Nusselt number. 

FIG. 8. Effects of wall emissivity, number of fins, and relative 
fin heights on the mean bulk temperature. 

+b 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

N-3 
t$- 1.0 

M-3 H - 0.3 

M-3 H - 0.6 

M-7 H - 0.3 

u-7 H = 0.6 

.Tb - 2.0 

FIG. 6. Effects of optical thickness, number of fins, and 
relative Cn heights on mean bulk temperature. 

FIG. 9. Effects of wall emissivity, number of tins, and relative 
fin heights on the total Nusselt number. 

N-3 
Tb - 5.0 

- M=3 H = 0.3 
----- M-3 H = 0.6 

M-7 H = 0.3 
---_ M-57 H = 0.6 
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Table I. Effects of the grid size on the local Nusselt number for M = 3. H = 0.6. t:, = 1.0. 
- = 5.0 ih 

N = 0 

7x 96 
I/X X 

1000 0.00112 40.26636 40.39857 
200 0.00485 27.51973 27.73492 
180 0.00560 26.38192 26.54395 
160 0.00635 25.45135 25.55182 
120 0.00821 23.73195 23.68378 
100 0.01000 22.53957 22.41231 
80 0.01232 21.49737 21.18621 
60 0.01680 20.08234 19.61297 
50 0.02016 19.34419 18.82086 
40 0.02501 18.55629 18.00842 
30 0.03322 17.66386 17.14091 
20 0.05000 16.61716 16.18327 
IO 0.10000 14.30264 14.10567 
9 0.11123 13.63986 13.50776 

region, absent of radiation (N = 0), but with internal 

longitudinal fins have been carried out. The values of 
NuT are plotted vs the axial position and compared 
with the results of ref. [24], as shown in Fig. 4. Inspec- 
tion of the curves in this figure indicates very close 

agreement with the above-mentioned reference which 
further validates the proposed methodology. 

Figures 4 and 5 depict the axial variation of the 

mean bulk temperature and total Nusselt number with 
wall emissivity of E, = 1.0; optical thickness of 

q, = 5.0 ; number of fins, M = 3 and 7 ; relative fin 
heights of H = 0.3 and 0.6 for radiation-conduction 
parameters of N = 0, 1 and 3.0. Figure 4 indicates 
that the mixed mean temperature increases very rap- 
idly with a decrease of the radiation-conduction par- 

ameter. The curves for N = 0 in this figure relate to 
pure forced convection. Comparison of curves for 
N = 0 with those given in ref. [24] indicates excellent 

agreement which further validates the proposed meth- 
odology. In addition, it is observed that increasing the 

number of fins and relative fin height, increases the 
development of the mean bulk temperature. Figure 5 
indicates that the total Nusselt number increases as 
both the radiation-conduction parameter and the 
number of fins increases. In fact, it is seen that the 
total Nusselt number attains a minimum, and beyond 
that point, increases dramatically. To explain this 

phenomenon, as the gas passes through the duct, the 
position of the minimum Nusselt number shifts 
toward the inlet of the channel, indicating a more 
rapid development in the fluid, after which radiation 
is the dominant factor controlling the total Nusselt 

number. 
Figures 6 and 7 represent the variation of the axial 

mean bulk temperature and the total Nusselt number 
with wall emissivity of E, = 1.0; a radiation-con- 
duction parameter of N = 3 for optical thicknesses of 
z,, = 0.5, 2.0. and 5.0; number of fins, M = 3 and 7 ; 
and relative fin height of H = 0.3 and 0.6. It is 
observed that at the entrance region of the semi- 

/ji= 1 

Number of lines 
78 96 

Nu,.r 

.Y = 3 

7x 96 

41.L8594 41.34494 43.04618 43.25586 
28.68325 28.90509 31.10324 31.34966 
27.58617 27.75654 30.10766 30.28743 
26.69968 26.80737 29.32473 29.43640 
25.09274 25.03304 27.99566 27.90842 
24.01942 23.85207 27.22100 26.97054 
23.12299 22.75927 26.69784 26.21101 
22.00215 21.44407 26.36026 25.56293 
21.48791 20.84562 26.47397 25.50075 
21.03577 20.32712 27.0148 I 25.86346 
20.75389 20.01641 28.76411 27.8443 
21.20759 20.45445 35.93944 33.743 I4 
27.12895 25.62045 
30.18234 28. I 1092 

circular duct, there is basically no deviation in the 
mean bulk temperature at different optical thick- 
nesses. Additionally, increasing the number of fins 
in the same region would increase the surface area 
enhancing convective heat transfer. This can be 
explained by the fact that forced convection is domi- 

nant at the entrance region of the semicircular duct. 
However, as the gas passes through the duct, a sig- 
nificant deviation is observed in the mean bulk tem- 
perature as the optical thickness, number of fins and 
relative fin heights increase. Obviously, this is due to 
the fact that the dominant term is radiative at the end 
of the channel. Figure 7 represents the total Nusselt 
number for the same conditions, and the same 
behavior can be observed. In fact, inspection of the 
curves in this figure indicates that the total Nusselt 
number is highest at q, = 5.0, A4 = 7, and H = 0.6. 
Additionally, full thermal development is never 
reached in these figures in the presence of radiation. 

Figures 8 and 9 illustrate the mean bulk tem- 
perature and total Nusselt number with radiation 
conduction, N = 3 ; optical thickness oft,, = 5 ; num- 
ber of fins, M = 3 and 7; and relative fin heights of 
H = 0.3 and 0.6 for wall emissivities of E, = 0.1, O.S. 

and 1.0. Figure 8 indicates that the mean bulk tem- 
perature is unaffected at the entrance region of the 
semicircular duct with wall emissivity. However, in 
the region of 10 ’ < X < lo- ‘, the mean bulk tem- 
perature decreases as the number of fins, fin heights. 
and wall emissivities are increased. Figure 9 indicates 
the same behavior as explained previously in Figs. 5 
and 7. However, it is observed that increasing wall 
emissivity enhances the total Nusselt number dm 

matically. 

SUMMARY AND CONCLUSIONS 

The combination of radiation and forced con- 
vection has been examined in this paper for the flow 
of an absorbing-emitting gas in an isothermal duct of 
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semicircular cross section with longitudinal internal 

fins. The significant role played by radiation and inter- 

nal fins in the thermal entrance region has been suc- 

cessfully represented by the MOM and the MOL. The 
nodes have been carefully placed along the surfaces 
to avoid the usual difficulties with irregular bound- 
aries. The use of coarse grids in the cross section of 
the duct yields a relatively small system of first-order 
ordinary differential equations. Hence, this system can 
readily be solved by either analytical or numerical 
techniques. The effects of the different physical par- 
ameters were systematically studied. The following 
conclusions were obtained. 

(1) The interaction of radiation with forced con- 
vection and fins increases the convective heat flux at 
the wall and, in general, results in an augmentation of 
the heat transfer process. 

(2) Radiation-conduction, N, optical thickness, Q,, 
and wall emissivity, E,, are the major parameters 
affecting radiation heat transfer. 

(3) The total Nusselt number for the semicircular 
duct attains a minimum value at certain downstream 
locations, and beyond these points, NuT increases 
again. As N increases, the minimum points of NuT 
shift toward the entrance direction. 

(4) Increasing the number of fins and relative fin 
heights, increases the Nusselt number accordingly, 
and thus, delays the development of the local Nusselt 
number in the entrance region of the duct. 
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TRANSFERT THERMlQUE CONVECTIF-RADIATIF DANS LA REGION D’ENTREE 
D’UN TUBE SEMI-CIRCULAIRE AVEC DES AILETTES INTERNES 

LONGITUDINALES 

R&sum&On analyst le transfert permanent de convection forcke laminaire avec rayonnement dans la 
rkgion d’entrte d‘un tube semi-circulaire ailetP inttrieurement. Les ailettes sont continues et longitudinales 
avec une t-paisseur nulle. La condition imposPe sur le tube est celle de temptrature uniforme d la fois 
axialement et sur la ptriphirie. L’t-quation d’bnergie tridimensionnelle est disct+tis&e et rtsolue numt-rique- 
ment par la mtthode des lignes (MOL). La mithode de la quantitC de mouvement (MOM) est employ&e 
pour considkrer la contribution du rayonnement qui modilise le rayonnement dans I’kquation aux dirivkes 
partielles, au lieu de I’&quation intkgro-diffirentielle. Les tquations rtsultantes sont calculCes numtrique- 
ment en utilisant la subroutine Runge-Kutta. On discute I’effet de cinq parametres principaux sur le 
comportement dans la rigion d’entrte du tube : rayonnement-conduction N, Cpaisseur optique z~, Cmissivitt- 
de la paroi F,, nombre d’ailettes ~zil. et rapport de la hauteur de l’ailette au rayon du tube H. Les variations 
de la tempkrature moyenne d coeur et des nombres de Nusselt globaux montrent que le transfert thermique 

est augment6 dans cette &om&trie i la fois par le rayonnement et par les ailettes. 

WARMEUBERTRAGUNG DURCH KONVEKTION UND STRAHLUNG IM 
THERMISCHEN EINLAUFGEBIET EINES HALBKREISFiiRMIGEN KANALS MIT 

INNEREN LANGSRIPPEN 

Zusammenfassnng-In der vorliegenden Arbeit wird die Wirmeibertragung durch stationire laminare 
erzwungene Konvektion und Strahlung im Einlaufbereich eines innenberippten, halbkreismrmigen Kanals 
untersucht. Die Rippen, mit der Dicke Null. sind zusammenhgngend und in Llngsrichtung angebracht. 
Als thermische Randbedingung wird dem halbkreisfiirmigen Kanal in axialer und in Umfangsrichtung 
eine gleichfijrmige Temperatur aufgeprlgt. Die dreidimensionale Energiegleichung wird diskretisiert und 
nach der Linienmethode (MOL) numerisch gel&. Zur Beriicksichtigung des Strahlungsbeitrags wird die 
Momentenmethode (MOM) angewandt, bei der die Strahlung in der partiellen Differentialgleichung anstatt 
der partiellen Integro-Differentialgleichung modellmll3ig erfal3t wird. Die resultierenden Gleichungen, die 
auf einem groben Gitter basieren, werden mit einem Runge-Kutta Unterprogramm berechnet. Der EinfluR 
von 5 Hauptpardmetern auf das thermische Verhalten im Einlaufgebiet des halbkreisfcrmigen Kanals wird 
untersucht: N fiir Strahlung-Leitung; 5,, fiir die opt&he Dicke; E, fiir die Wandemissivitat; M fiir die 
Zahl der Rippen und H fiir das VerhHltnis aus Rippenhdhe und Kanalradius. Die VerSnderungen dcr 
mittleren Fluidtemperatur und der Nusselt-Zahl zeigen. da8 der WCrmetibergang bei dieser geometrischen 

Anordnung sowohl durch die thermischc Strahlung als such durch die Berippung verbessert wird. 

KOHBEKTMBHO-PAaMAqkiOHHbIti TEHJIOHEPEHOC 80 BXOAHOfi 0I;JIACTM B 
HOJIYKPYI-JIbIn KAHAJI C HAI-IPABJIEHHbIMkl II0 TEqEHklIO BHYTPEHHUMM 

PE6PAMI4 

AtmoTaqm-AHaJm3HpyIoTcn CTallUOHapHaK JlaMHHapHa5l BbIHyXneHHaK KOHBeKUHB II paJIHalIllOHHbIfi 
TennonepeHoc 80 BXOJIHO~~ o6nacTH nonyKpymoro KaHana c pe6pahta. PeGpa IIBJIIZ~TCII cnnomHbIhm, 
npononbeo HanpaBneBHbIMu B HMemT Hyneeym TonmnHy. Ha ecu u nepuaepwe KaHana nonaepxa- 
BaeTCIl nOCTORHHall TeMnepaTypa. TpeXMepHOe ypameme 3Heprm pemaeTcr YEiCneHHbIM MCTOAOM. 

BKnan li3ny'leHHn O~HCbtBaeTCKHe~HTerpO-~~~~epeH~~~bHbIM,a~~~~~H~~~bHbtM ypaBHeHHeM B 

YaCTHbIX IlpOH3BOAHbIX. Pe3yJlbTHpyloIW ypaBHeWI PeIIIaIOTCn 'iHCJIeHH0 MeTOLlOM PyHre-KyTTa. 
06cymnae-rca BJIIIBHHC Ha TeIIJlOBOti FKCHM BO BXOnHOii o6nacTu KaHClJla IlPTB OCHOBHUX IIapaMeTpOB : 
pona nepeHoca 3HeprflH u3nyueHHeh4 no cpa9HeHuIo c nepeHocoM TennonpoBonHocrbm N, 0nTuqecKoti 
TOnUJIlHbI Zb, nornomaTenbtioL CIIOCo6HoCTU cTefiKIi E,, 911cJIa pe6ep M, OTHOuIeHm BblCOTbI pe6pa K 

panaycy KaHaJla ff.ki3MeHeHEin CpeAHeMaCCOBOfi TeMllepaTypbl H 'IACne HyCGnbTa lIOKa3blBalOT,'iTO B 

paccMaTpasaeMo% reohteTpua TennonepeHoc ycenrreae-rcR KaK 38 cqeT TennoBoro asnyseaan, TLK u 3a 
cqeT pe6ep. 


